

Nature's integration in cities' hydrologies, ecologies and societies

## Runoff, Heat and Habitat: Modelling potential of multifunctional NbS

Speaker: Svetlana Khromova Authors: Khromova S., Busse S., Benati G., Herreros Cantis P., Segura-Barrero R., Ventura S., Eckelman M. J., Villalba Méndez G., Langemeyer J.

### NICHES FINAL CONFERENCE / 24.03















## Multi-Criteria Decision Analysis (MCDA) framework

Step2 Step1 Site specific Identification of allocation of NBS urban needs (SETS Feasibility assessment) (SETS Risk assessment) Step<sub>2</sub> Step3 *Co-benefits* NBS performance Assessment (Rainfall-Runoff modelling) (Modelling of thermal comfort, water storage, water quality, habitat quality, nature access)

Inspired by Langemeyer, 2016

# **Case study cities**





# (Step 2) Site specific allocation of NBS

Title: From Runoff to Resilience: Exploring Multifunctional Nature-Based Solutions for Sustainable Urban Stormwater Management

Authors: Khromova S., Busse S., Benati G., Herreros Cantis P., Segura-Barrero R., Ventura S., Eckelman M. J., Villalba Méndez G., Langemeyer J.

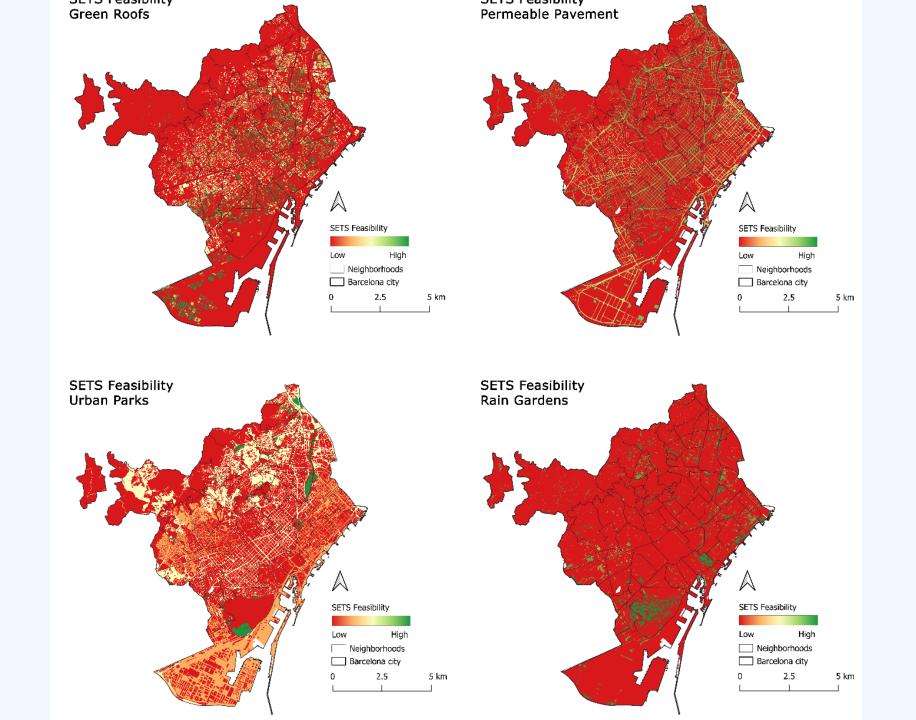
Journal: To be defined



## **NBS** selection

### Green roofs

### Rain gardens






## Permeable pavement

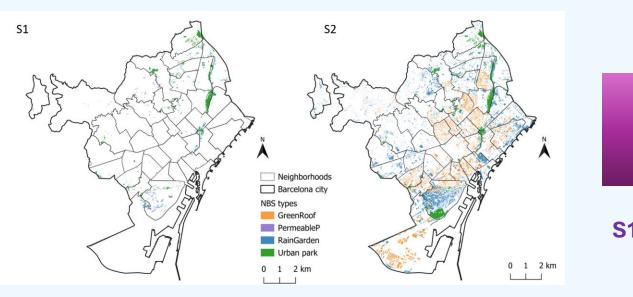








# Proportion between area of **S1** and **S2**


#### Scenario 1

#### <u>Pla Natura (2021-2030)</u>

1m<sup>2</sup> of greenery per resident by 2030, equivalent to 160 hectares of new green spaces

### Scenario 2

Top 25% by highest feasibility score



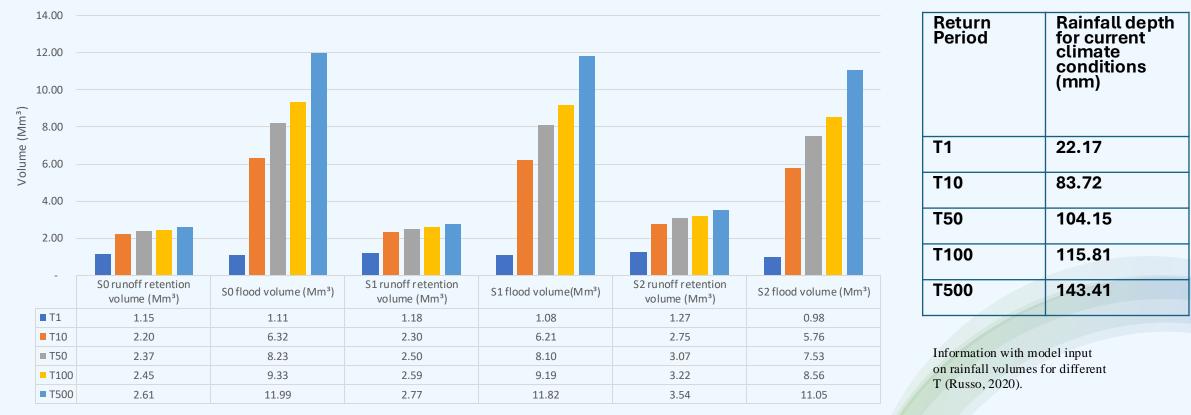


S1: 160ha

S2: 2498ha



# (Step 3) NBS performance

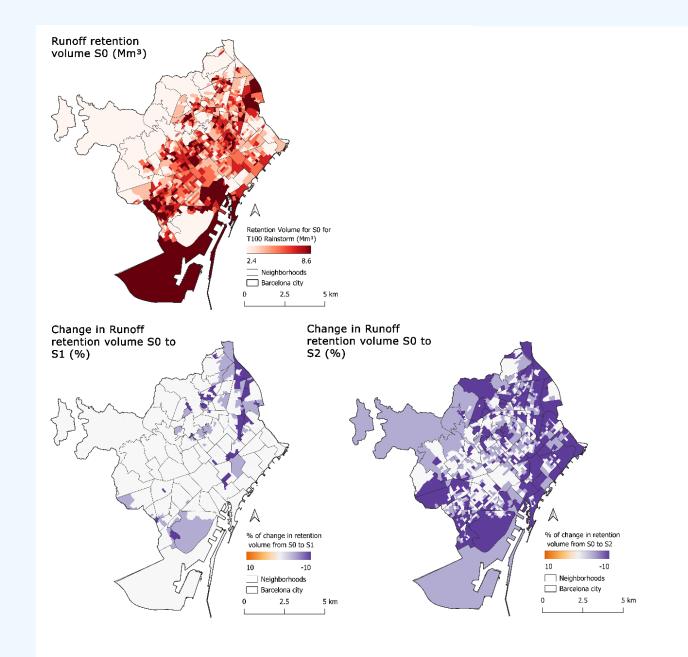

Title: From Runoff to Resilience: Exploring Multifunctional Nature-Based Solutions for Sustainable Urban Stormwater Management

Authors: Khromova S., Busse S., Benati G., Herreros Cantis P., Segura-Barrero R., Ventura S., Eckelman M. J., Villalba Méndez G., Langemeyer J.

Journal: To be defined



# Performance assessment results for runoff retention volume and flood volume




<sup>■</sup> T1 ■ T10 ■ T50 ■ T100 ■ T500

Modelling results from InVEST® Urban Flood Risk Mitigation module version 3.14.2 (Natural Capital Project, 2023)



## Spatially explicit performance assessment results of runoff retention volume



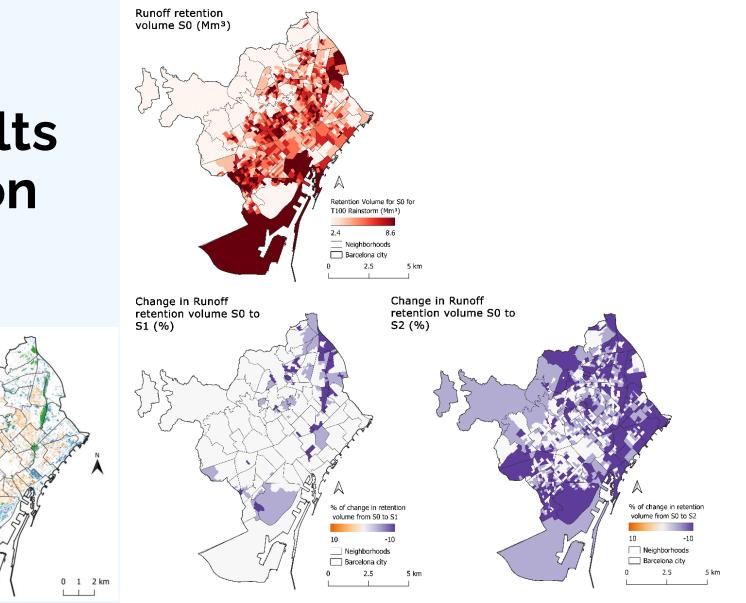
Modelling results from InVEST® Urban Flood Risk Mitigation module version 3.14.2 (Natural Capital Project, 2023)



## Spatially explicit performance assessment results of runoff retention volume

S2

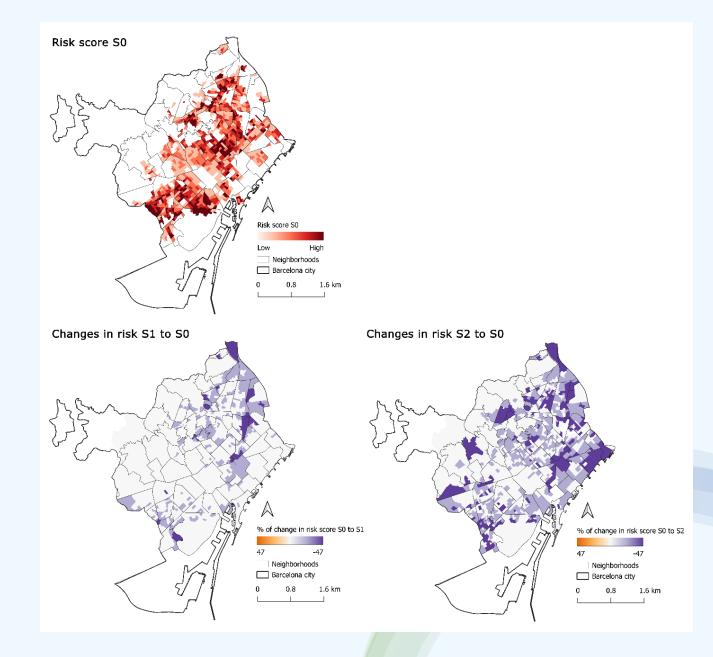
Neighborhoods


RainGarder

Urban parl

2 km

NBS types GreenRoof PermeableP


S1



Modelling results from InVEST® Urban Flood Risk Mitigation module version 3.14.2 (Natural Capital Project, 2023)



Changes across scenarios S1 and S2 compared to S0 in spatial distribution of risk



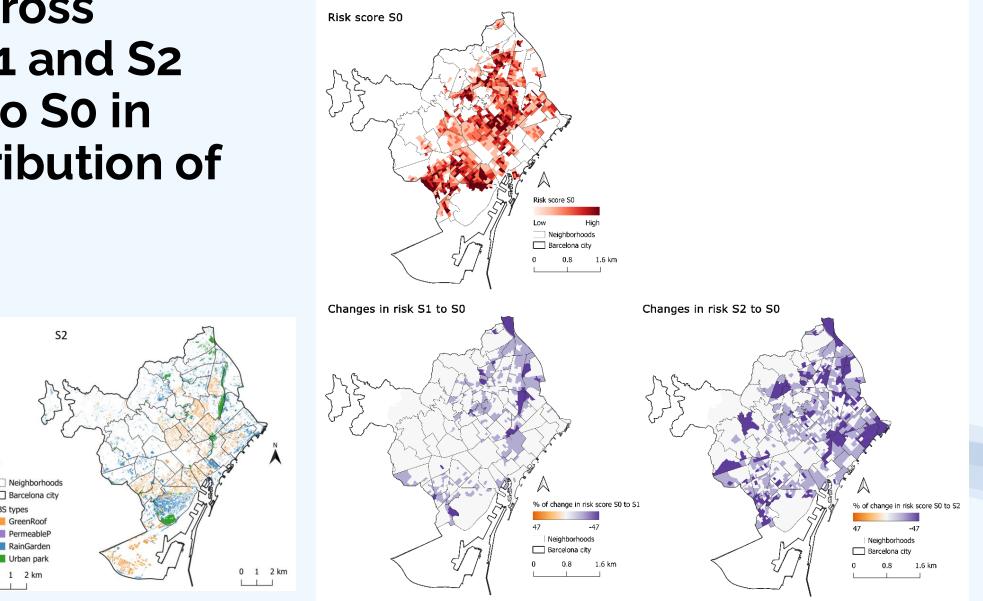


**Changes across** scenarios S1 and S2 compared to So in spatial distribution of risk

Barcelona city

PermeableP

RainGarden


Urban park

0 1 2 km

E E I

NBS types GreenRoof

S1

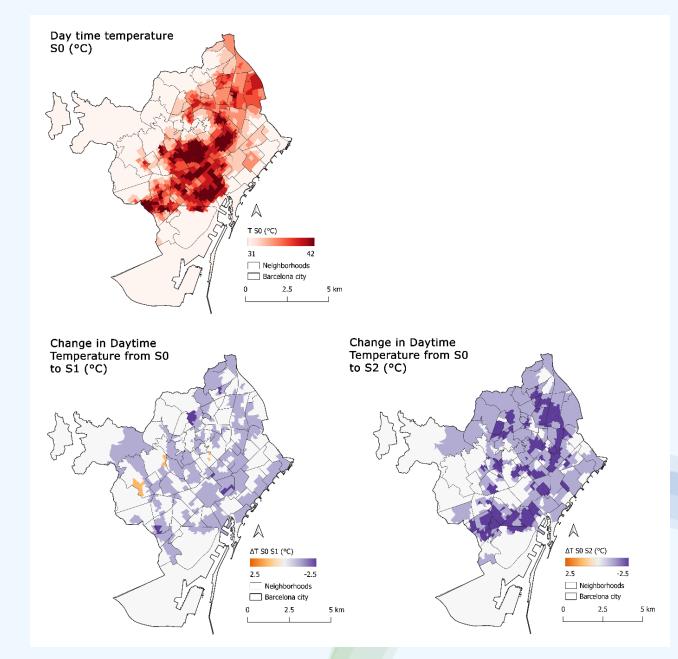




# (Step 4) Co-benefits Assessment

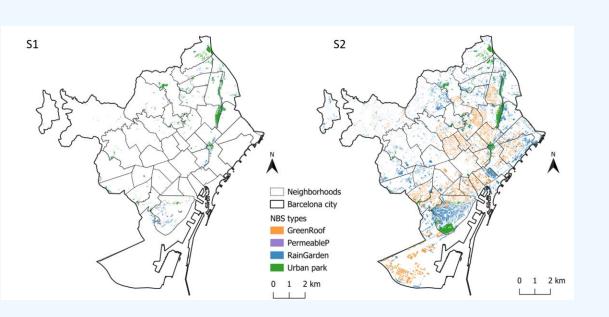
Title: From Runoff to Resilience: Exploring Multifunctional Nature-Based Solutions for Sustainable Urban Stormwater Management

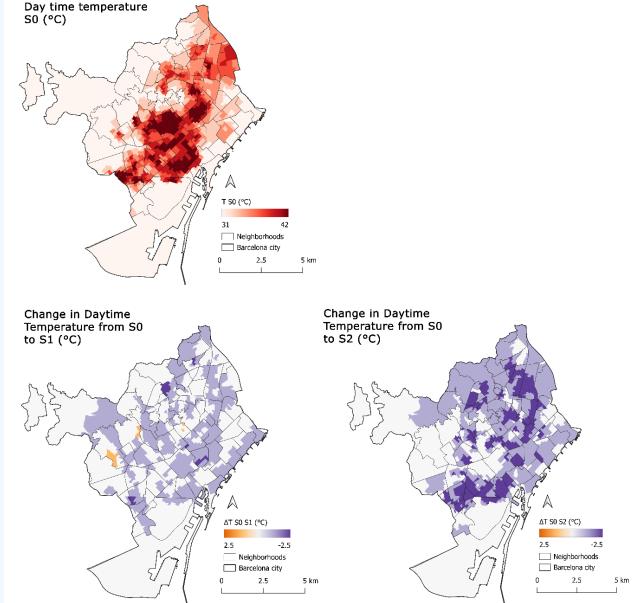
Authors: Khromova S., Busse S., Benati G., Herreros Cantis P., Segura-Barrero R., Ventura S., Eckelman M. J., Villalba Méndez G., Langemeyer J.


Journal: To be defined



## Mean temperature for heatwave event


Rising Heatwave Intensity: Future projections indicate more frequent and intense heat waves in Barcelona (del Río et al., 2007).
Role of NBS: Most proposed Nature-Based Solutions (except permeable pavement) integrate vegetation, which helps mitigate heat through shade, transpiration, and solar energy absorption (Shao & Kim, 2022).
Temperature Assessment: Analyzed daytime


•Temperature Assessment: Analyzed daytime temperatures (°C) between 13:00 and 16:00 from July 4 to July 6 during the 2015 heatwave in the Metropolitan Area of Barcelona.





# Mean temperature for heatwave event







Modelling results from Weather Research and Forecasting (WRF) model (v4.3.3)

# Water quality

|             | S0      | S1      | S2      | % S1 to | % S2 to |
|-------------|---------|---------|---------|---------|---------|
|             |         |         |         | S0      | S0      |
| N surface   | 113947  | 111698. | 105599. | -1.9    | -7.3    |
| load (kg/   |         | 7       | 4       |         |         |
| year)       |         |         |         |         |         |
| N surface   | 31497.2 | 30689.4 | 28154.8 | -2.5    | -10.6   |
| export (kg/ | 6       |         |         |         |         |
| year)       |         |         |         |         |         |
| P surface   | 15692.0 | 15411.2 | 14609.0 | -1.7    | -6.9    |
| load (kg/   | 3       | 8       | 6       |         |         |
| year)       |         |         |         |         |         |
| P surface   | 4036.06 | 3937.71 | 3628.54 | -2.4    | -10.1   |
| export (kg/ | 3       |         | 8       |         |         |
| year)       |         |         |         |         |         |

Stormwater Pollution Challenge: Contaminated urban runoff in Barcelona limits the potential of stormwater as an alternative water source (Björklund et al., 2018).
NBS Co-benefits: Assessment of nature-based solutions (NBS) in capturing nutrients (nitrogen and phosphorus) to mitigate pollution.



Modelling results nutrient delivery ratio (NDR) module of InVEST version 3.14.2 (Natural Capital Project, 2023)

# **Nature Access**

|                                                         | S0    | S1    | S2    | % S1 to<br>S0 | % S2<br>to S0 |
|---------------------------------------------------------|-------|-------|-------|---------------|---------------|
| Population<br>undersup<br>plied with<br>urban<br>nature | 262.6 | 226.5 | 131.4 | -13.7         | -49.9         |

High Demand for Green Spaces: Barcelona's dense urban structure limits outdoor recreational areas, increasing demand (Baró et al., 2014).
Well-being Benefits: Green spaces are essential for residents' physical and mental health (Triguero-Mas et al., 2015).
NBS Co-benefits: Assessment of nature-based solutions (NBS) in of green space supply

•Per capita demand for urban nature: 9m2 (target recommended by the WHO)



Modelling results from urban nature access module of InVEST version 3.14.2 (Natural Capital Project, 2023)

# Water Storage

|             | S0      | S1      | S2      | % S1 to S0 | % S2 to |
|-------------|---------|---------|---------|------------|---------|
|             | - 30    |         |         |            | S0      |
| Total       |         |         |         |            |         |
| percolation |         |         |         |            |         |
| volume      | 3206250 | 3490291 | 5079064 | 8.9        | 58.4    |
| (m³/year)   |         |         |         |            |         |
|             |         |         |         |            |         |

#### Increasing Droughts in Barcelona:

Accelerated hydrological cycle leading to more frequent droughts (Russo et al., 2020).

•Impact of Drought Contingencies: Water restrictions for irrigation cause environmental, economic, and social challenges (Forero-Ortiz et al., 2020).

•Groundwater as an Alternative: Not commonly used in Barcelona due to low extraction rates and high concentrations of minerals and pollutants.

•Role of Nature-Based Solutions (NBS): Selected NBS (except green roofs) enhance groundwater recharge, offering a potential future water source for irrigation.



# Habitat Provisioning

|            | S0     | S1     | S2     | % S1  | % S2  |
|------------|--------|--------|--------|-------|-------|
|            |        |        |        | to S0 | to SO |
| Mean       |        |        |        |       |       |
| value for  |        |        |        |       |       |
| quality of | 0.0029 | 0.0030 | 0.0042 | 3.6   | 36.2  |
| ecosyste   |        |        |        |       |       |
| ms         |        |        |        |       |       |

• Limited Ecosystem Services in New Urban Areas: Newly constructed areas in Barcelona offer minimal supply and biodiversity services, highlighting the need for expanded multi-functional green spaces (Zhang & Ramírez, 2019).



Modelling results from habitat quality and rarity module of InVEST version 3.14.2 (Natural Capital Project, 2023)

# **Discussion points:**

- Limited mitigation capacity of NBS
- NBS as a hybrid solution
- Single hazard vs multiple hazards prioritization
- Role of NBS in systemic changes





Nature's integration in cities' hydrologies, ecologies and societies

# **Thank You!**

Svetlana.Khromova@uab.cat





niches-project.eu



NICHES Newsletter



ulf.stein@ecologic.eu



@NICHES\_project



@nichesproject



This project was funded through the 2020-2021 Biodiversa and Water JPI joint call for research proposals, under the BiodivRestore ERA-Net COFUND programme, and with the funding organisations: German Federal Ministry of Education and Research, Agencia Estatal de Investigacion espanola. Ministry of Agriculture. Nature and Food Quality of the Netherlands. NICHES is coordinated by the Ecologic Institute.